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SUMMARY 

The use of linear finite elements in fluid dynamic problems requires the evaluation of integrals of polynomial 
expressions, which arise from product terms in the equations of motion. An algorithm based on Simpsoil 
quadrature is presented and its efficiency compared with that of the more usual one, based on Gaussian 
quadrature. For both algorithms, the integrations are exact provided that the polynomial integrand is at most 
cubic. It is found that the Simpson algorithm is twice as efficient as the corresponding Gaussian one, for the 
evaluation of integrals in one, two and three space dimensions. This doubling of efficiency is a consequence of 
the vanishing of the basis functions at certain points, a property that can be exploited in the Simpson 
algorithm, but not in the Gaussian one. It is thought that the use of the Simpson algorithm will prove to be 
beneficial in many finite element fluid dynamic codes, because the evaluation of product terms generally 
represents a significant fraction of the total computational cost. 

INTRODUCTION 

The use of linear finite elements in one, two and three space dimensions has become quite popular 
for fluid dynamic problems in simple geometries,'** and leads to the need to evaluate integrals of 
the form 

1, = U( X) V (X) 8, (X)dX (1) s 
where &(x) is the basis function associated with the kth node xk, u(x) and u(x) are finite- 
element expansions of the form 

M 

and x is the one, two- or three-dimensional space vector. As noted by Gresho e f  a/.,' such integrals 
implicitly contain many terms, particularly in two and three dimensions, and in many applications 
their evaluation contributes significantly to the total computational cost; it is consequently 
important to evaluate them efficiently. In fact, it was this costly evaluation that motivated Gresho 
et a/.' to examine an '. . .ad hoc (non-Galerkin) modification called centroid advection velocity'. 
They also caution the reader that this modification '. . . may, however, introduce some aliasing error 
in contrast to the honest Galerkin finite element method, which does not'. It is not our intention to 
discuss here the merits of this alternative approach, but rather to describe how the calculations of 
the 'honest Galerkin finite element method' may be made more efficient in this context, and 
consequently computationally more attractive. 
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Because the integrand is a polynomial it is possible to analytically integrate the individual terms 
and express the integral as a weighted sum of products of the form uiu j ,  where ui and uj  are the 
values of u and u at the nodes xi and x j ,  neighbours of the node x k .  This is rarely done in 
practice, however, since it is computationally expensive. 

The usual method of evaluation (see, for instance, Reference 1 ,  p. 562 and Reference 3, p. 32) is to 
use Gaussian quadrature over subdomains, where the quadrature formula is chosen to be the one 
of lowest order that exactly integrates the polynomial integrand. In the present paper we show that 
the computational cost of evaluating such integrals may be halved by using Simpson quadrature 
instead of the more usual Gaussian quadrature. Although Simpson quadrature has been 
successfully used in the past to evaluate FE  integral^,^.^ its efficiency advantage for bilinear and 
trilinear elements does not appear to be generally well known, thus motivating this short 
contribution. We first compare the computational efficiencies of the two methods in one 
dimension, and then show how to extend this result to higher dimensions. 

EVALUATION IN ONE DIMENSION BY GAUSSIAN QUADRATURE 

In one dimension (1) and (2) reduce to 

1, = jI: U(X)U(X)ek(X)dX 

and 

where ek(x )  is the Chapeau basis function (Reference 3, p. 27) centred on node xk of a mesh of points 
x1 < x2 < x j  < ... < xM, and fm = f ( x , ) .  These basis functions are illustrated in Figure 1; they 
form an interpolatory basis and f(x) is piecewise linear. Since ek(x) is zero over most of the domain, 
(3) simplifies to 

I1 = R , ,  ( 5 )  
I ,  = R ,  + S k -  (6)  

1, = S M -  1,  (7) 
k = 2 ,3 , .  . . , ( M  - l), 

where 

ycx, 

xk+z 
x x  

5 - 2  5.1 k k.1 

Figure 1. Three adjacent Chapeau basis functions: ex-  '(x)-short dashed line; eX(x)-full line; ek+ l(x)--long dashed line 
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and 

u(x)u(x)ek+ ,(x)dx, k = 1,2,. . . , ( M  - 1). (9) 

For a given interval xk d x d x k +  1,  Rk is the contribution over this interval to I,, whereas s k  is the 
contribution to I k +  1 .  

The integrands of (8) and (9) are cubics by construction, and can therefore be evaluated exactly 
by the two-point Gaussian quadrature rule (Reference 6,  section 2.7): 

For X E [ X ~ , X ~ + ~ ]  we have by definition that 

and similarly for u(x). In particular 

and a similar result obtains for u(x). 

for all, we can put together the above results as: 
Assuming that all mesh-dependent (i.e. data-independent) quantities are pre-computed once and 

Algorithm GI (Gaussian quadrature in one dimension) 

(i) For k = 1,2,. . . , ( M  - l ) ,  compute 

= uk + Cek+ l(t: ) / e k ( t :  ) I u k +  1 7  

Bk' = Ok + Cek + 1 ((2 ) / e k ( t :  ) I u k  + 1 9 

C' = A'B' 
k k k .  
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( i i )  For k = 1,2,. . . , ( M  - l), compute 

R k  = [ ( x k  + 1 - xk)ek3(<; c; + [ ( x k  + 1 - xk)ek3(5: )/21 c: 
and 

s k =  [ ( xk+ l  - X k ) e : ( < ; ) e k + 1 ( 5 ; ) / 2 1 C k  + [ (xk+ l  -Xk)ek2(<:)ek+1(5:)/21C:' (24) 

( i i i )  For k = l ,2 , .  . . , M compute 1, using (5)-(7). 

In  Algorithm G1, all the terms in square brackets are data-independent and may be 
precomputed. These terms have been grouped together in this way in order to precompute as many 
mesh-dependent quantities as possible, and thus minimize the total number of arithmetic 
operations in the context of a problem requiring many integral evaluations on a fixed mesh. 
Denoting a multiplication by m and an addition by a, the number of arithmetic operations per node 
for steps (i)-(iii) are 2(3m + 2a), (4m + 2a) and (la), respectively. The total number of arithmetic 
operations per node for Algorithm GI is thus (10m + 7a). 

EVALUATION IN ONE DIMENSION BY SIMPSON QUADRATURE 

Instead of using the two-point Gaussian quadrature rule (10) to evaluate ( 8 )  and (9), we use the 
Simpson rule 

1;" f(x)dx = ( x k + l  - X k ) [ f ( X k )  + 4 f ( X k + 1 / 2 )  + f ( X k + 1 ) 1 / 6 ,  (25)  

where 

x k +  1 / 2  = ( x k  + x k +  1 )I2- (26) 

Simpson's rule is also exact for cubics and application to (8) and (9) yields [using (14)-(16)] 

R k  = ( x k  + 1 - x k ) ( u k u k  + 2uk + 112 uk + 1 / 2 ) / 6  

and 
(27) 

sk = ( x k +  1 - x k ) ( 2 u k +  1 / Z U k +  112 + u k +  1 u k +  1 )/6? (28) 

u k +  112 = 3 ( u k  + u k +  1 )  (29) 

uk+1/2=$(uk+uk+l) .  (30) 

where 

gnd 

Note that there is no contribution to Rk at x = xk+ by virtue of the fact that ek(Xk+ 

definition. Similarly, there is no contribution to s k  at x = xk, since ek+ l ( x k )  = 0. 
= 0, by 

Using (5)-(7) and (27)-(30) leads to: 

Algorithm S l  (Simpson quadrature in one dimension) 

( i )  For k = 1,2,. . . , ( M  - l), compute 

and 
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(ii) F o r k =  1 ,2 , . . , (M-  l) ,  compute 

(iii) Compute for k = 1,2,. . . , M 

(iv) Compute 
G k  = u k u k .  (34) 

for k = 2,3,. . . , ( M  - I), and 

1, = [(X, - X M -  1)/61G, + F,-  l j 2 .  (37) 
Terms have again been grouped together to minimize the total number of arithmetic operations, 

and those in square brackets are data-independent and may be precomputed. The number of 
arithmetic operations per node for steps (i)-(iv) of Algorithm SI are (2a), (2m), (1 m) and (1 m + 2a), 
respectively, giving a total of (4m + 4a). Comparing this total (8 arithmetic operations per node) 
with that of the corresponding Gaussian algorithm (10m + 7a = 17 arithmetic operations per 
node), we find that the Simpson algorithm is approximately twice as fast as the Gaussian al<jorithm. 

EVALUATION IN 2-D AND 3-D 

Evaluations in two and three dimensions of integrals of the form of (1) are performed by a 
dimension-reduction technique whereby, for example, a 3-D evaluation is reduced to a set of 2-D 
evaluations, each of which in turn is further reduced to a set of 1-D evaluations. To illustrate the 
technique, we examine the evaluation using Simpson quadrature of the 2-D integral 

where 
M N  

with a similar expansion for u(x,y). 

By applying Simpson quadrature to each of the two intervals y ,  - d y d y ,  and y,, d y d y ,  + and 

rewrite (38) as 

For 2 d n d N - 1 the limits of integration over y in (38) reduce to the interval y,- d y d y r I +  

noting that CAY,, 1)  = 0, e,(y,) = 1, e,(y,, 1,2) = + ?  where Y,, 112 = (Y,  + Y,, 1 )/2> we may 

(40) 
For n = I ,  Jm,l is given by the second curly-bracketed term of (40) and for n = N ,  Jrn.N is given by 
the first curly-bracketed term. 

From (39), and (14) and (15) we see that 
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with similar results for u(x, y,) and U ( X , ~ , + ~ / ~ ) .  

The integrals appearing in (40) therefore correspond to one-dimensional integrals along the 
lines y = y,, where y ,  = y ,  or Y , , ~ ~ , ~ ,  and these can be evaluated using the one-dimensional 
algorithm of the previous section. Putting these results together, and grouping terms to minimize 
the number of arithmetic operations, we have: 

Algorithm S2 (Simpson quadrature in two dimensions) 

(i) For m = 1,2,. . . , M and n = 1,2,. . . , (N  - l), compute 

D m , n  + 1 / 2  = Um,n + Um,n + 19 

and 

Em,,+ 1 / 2  = Um-n + urn.,+ i .  

(ii) For m = 1,2,. . . , M and n = 1,2,. . . , ( N  - I ) ,  compute 
(using Algorithm S1) 

X M  

F m , n +  112 = [ ( y , +  1 -Yn)/121 j Dn+ 1 / 2 ( X ) ~ n +  1 / 2 ( X ) e m ( X ) d X ,  
XI 

where 
M 

D n + l / Z ( X ) =  1 D m , n + 1 / 2 e m ( ~ )  
m =  1 

and 
M 

(iii) For m = 1,2,. . . , M and n = 1,2,. . . , N ,  compute (using Algorithm S1) 

G m , n  = j::(x, Y n ) u ( x ,  y n ) e m ( x ) d x .  

(iv) For m = 1,2,. . . , M compute 

(43) 

(44) 

(45) 

Jm,n = C ( Y ~ +  1 - ~ n -  1 1 / 6 1  G m , n  + F m , n -  112 + F m , n +  1/27 

for n = 2,3, .  . . , (N  - l), and 

Jm,N  = [ ( Y N  - Y N  - 1 Gm,N + Fm,N - 1 / 2 -  (51) 
In Algorithm S2, the square-bracketed terms are again data-independent, and are assumed 

to have been precomputed. Comparing the form of Algorithm S2 with that of Algorithm S1, 
we see that they are analogous to one another, step for step. The number of arithmetic operations 
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per node for steps (i)-(iv) of Algorithm S2 are (2a), (5m + 4a), (4m + 4a) and ( l m  + 2a), respectively, 
giving a total of (10m + 12a) = 22 arithmetic operations. This is approximately half the cost of 
the corresponding two-dimensional Gaussian algorithm which requires (28m + 21 a)  = 49 arith- 
metic operations. 

It is straightforward to extend the above method for the evaluation of three-dimensional 
integrals and we therefore omit the details. In Table I, we summarize the numbers of arithmetic 
operations required by three different methods, namely computation by 

(a) weighted sums of the products of local values (as described in the Introduction) 
(b) Gaussian quadrature 
(c) Simpson quadrature. 

W e  see that Simpson quadrature is twice as efficient as Gaussian quadrature for integrals in one, two 
and three space dimensions. 
Table I. Operation counts per node of three different methods for evaluating integrals of the form ( l ) ,  as a 
function of the number of space dimensions; m denotes a multiplication, a an addition and ‘ops’ either a 

multiplication or an addition. 

Number of space dimensions 

1 2 3 

(a) local 7m+6a=  130ps 49m + 48a = 97 ops 343m + 342a = 685 ops 

(b) Gaussian 10m+7a= 17ops 28m + 21a = 49 ops 64m+49a= 1 1 3 0 ~ s  

(c) Simpson 4m+4a=  80ps 10m+12a=22ops 22m + 28a = 50 ops 

weighted sums 

quadrature 

quadrature 

Further economies are possible in the context of a fluid dynamic model code. For example, for an 
advection velocity u that appears in different terms in different equations, it is possible to avoid 
recomputing quantities such as Dm,n+1,2 of (43). The use of Simpson quadrature instead of 
Gaussian quadrature is equally beneficial for the computation of other integrals arising from 
product terms, such as Ju(x)du/dxiOk(x)dx. The only restriction is that the integrand be such that 
Simpson quadrature is exact. 

Finally, the described method for evaluating integrals is highly vectorizable (a very important 
aspect of the programming of supercomputers). For example, a 3-D evaluation on a 5 1 x 5 1 x 5 1 
mesh using Simpson quadrature takes 0.1 1 s on a Cray 1-S computer, which corresponds to 
approximately 60 Mflops (millions of floating-point operations per second). 
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